

General Certificate of Education Advanced Subsidiary Examination January 2011

Mathematics

MFP1

Unit Further Pure 1

Friday 14 January 2011 1.30 pm to 3.00 pm

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1	The quadratic equation $x^2 - 6x + 18 = 0$ has roots α and β .		
(a)	Write down the values of $\alpha + \beta$ and $\alpha\beta$.	(2 marks)	
(b)	Find a quadratic equation, with integer coefficients, which has roots α^2 and β^2 . (4 marks)		
(c)	Hence find the values of α^2 and β^2 .	(1 mark)	
2 (a)	Find, in terms of p and q, the value of the integral $\int_p^q \frac{2}{x^3} dx$.	(3 marks)	
(b)	Show that only one of the following improper integrals has a finite value, and find that value:		
(i) $\int_0^2 \frac{2}{x^3} \mathrm{d}x;$		
(i	i) $\int_2^\infty \frac{2}{x^3} \mathrm{d}x .$	(3 marks)	

Write down the 2×2 matrix corresponding to each of the following transformations: 3 (a)

- (i) a rotation about the origin through 90° clockwise; (1 mark)
- (ii) a rotation about the origin through 180° . (1 mark)
- (b) The matrices **A** and **B** are defined by

Calculate the matrix AB.

(i)

$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ -1 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -2 & 1 \\ -4 & 3 \end{bmatrix}$$

(ii) Show that $(\mathbf{A} + \mathbf{B})^2 = k\mathbf{I}$, where **I** is the identity matrix, for some integer k. (3 marks)

- (c) Describe the single geometrical transformation, or combination of two geometrical transformations, represented by each of the following matrices:
 - (i) A + B; (2 marks)
 - (iii) $(A + B)^2$; (2 marks)
 - (iii) $\left(\mathbf{A} + \mathbf{B}\right)^4$. (2 marks)

(2 marks)

PMT

4 Find the general solution of the equation

$$\sin\left(4x - \frac{2\pi}{3}\right) = -\frac{1}{2}$$

giving your answer in terms of π .

5 (a) It is given that $z_1 = \frac{1}{2} - i$.

- (i) Calculate the value of z_1^2 , giving your answer in the form a + bi. (2 marks)
- (ii) Hence verify that z_1 is a root of the equation

$$z^2 + z^* + \frac{1}{4} = 0 (2 marks)$$

- (b) Show that $z_2 = \frac{1}{2} + i$ also satisfies the equation in part (a)(ii). (2 marks)
- (c) Show that the equation in part (a)(ii) has two equal real roots. (2 marks)

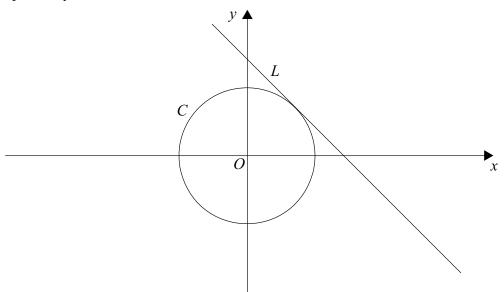
(6 marks)

6

The diagram shows a circle C and a line L, which is the tangent to C at the point (1, 1). The equations of C and L are

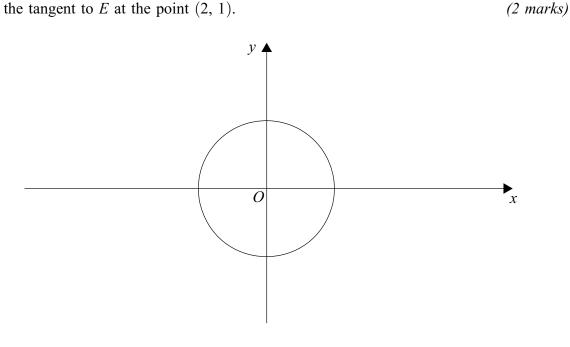
$$x^2 + y^2 = 2$$
 and $x + y = 2$

respectively.



The circle C is now transformed by a stretch with scale factor 2 parallel to the x-axis. The image of C under this stretch is an ellipse E.

- On the diagram below, sketch the ellipse E, indicating the coordinates of the points (a) where it intersects the coordinate axes. (4 marks)
- Find equations of: (b)
 - the ellipse E; (i)
 - (ii) the tangent to E at the point (2, 1).



(2 marks)

PMT

5

7 A graph has equation

$$y = \frac{x-4}{x^2+9}$$

- (a) Explain why the graph has no vertical asymptote and give the equation of the horizontal asymptote. (2 marks)
- (b) Show that, if the line y = k intersects the graph, the x-coordinates of the points of intersection of the line with the graph must satisfy the equation

$$kx^2 - x + (9k + 4) = 0 (2 marks)$$

- (c) Show that this equation has real roots if $-\frac{1}{2} \le k \le \frac{1}{18}$. (5 marks)
- (d) Hence find the coordinates of the two stationary points on the curve.

(No credit will be given for methods involving differentiation.) (6 marks)

8 (a) The equation

$$x^3 + 2x^2 + x - 100\,000 = 0$$

has one real root. Taking $x_1 = 50$ as a first approximation to this root, use the Newton-Raphson method to find a second approximation, x_2 , to the root. (3 marks)

(b) (i) Given that
$$S_n = \sum_{r=1}^n r(3r+1)$$
, use the formulae for $\sum_{r=1}^n r^2$ and $\sum_{r=1}^n r$ to show that

$$S_n = n(n+1)^2 \tag{5 marks}$$

(ii) The lowest integer *n* for which $S_n > 100\,000$ is denoted by *N*.

Show that

$$N^3 + 2N^2 + N - 100\,000 > 0 \qquad (1 \text{ mark})$$

(c) Find the value of N, justifying your answer. (3 marks)

Copyright © 2011 AQA and its licensors. All rights reserved.