Mathematics

Unit Further Pure 1

Friday 14 January $2011 \quad 1.30$ pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The quadratic equation $x^{2}-6 x+18=0$ has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Find a quadratic equation, with integer coefficients, which has roots α^{2} and β^{2}.
(4 marks)
(c) Hence find the values of α^{2} and β^{2}.
(1 mark)

2 (a) Find, in terms of p and q, the value of the integral $\int_{p}^{q} \frac{2}{x^{3}} \mathrm{~d} x$.
(b) Show that only one of the following improper integrals has a finite value, and find that value:
(i) $\int_{0}^{2} \frac{2}{x^{3}} \mathrm{~d} x$;
(ii) $\int_{2}^{\infty} \frac{2}{x^{3}} \mathrm{~d} x$.

3 (a) Write down the 2×2 matrix corresponding to each of the following transformations:
(i) a rotation about the origin through 90° clockwise;
(ii) a rotation about the origin through 180°.
(b) The matrices \mathbf{A} and \mathbf{B} are defined by

$$
\mathbf{A}=\left[\begin{array}{rr}
2 & 4 \\
-1 & -3
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
-2 & 1 \\
-4 & 3
\end{array}\right]
$$

(i) Calculate the matrix $\mathbf{A B}$.
(ii) Show that $(\mathbf{A}+\mathbf{B})^{2}=k \mathbf{I}$, where \mathbf{I} is the identity matrix, for some integer k.
(c) Describe the single geometrical transformation, or combination of two geometrical transformations, represented by each of the following matrices:
(i) $\mathbf{A}+\mathbf{B}$;
(ii) $(\mathbf{A}+\mathbf{B})^{2}$;
(iii) $(\mathbf{A}+\mathbf{B})^{4}$.

4
Find the general solution of the equation

$$
\sin \left(4 x-\frac{2 \pi}{3}\right)=-\frac{1}{2}
$$

giving your answer in terms of π.

5 (a) It is given that $z_{1}=\frac{1}{2}-\mathrm{i}$.
(i) Calculate the value of $z_{1}{ }^{2}$, giving your answer in the form $a+b$ i.
(ii) Hence verify that z_{1} is a root of the equation

$$
\begin{equation*}
z^{2}+z^{*}+\frac{1}{4}=0 \tag{2marks}
\end{equation*}
$$

(b) Show that $z_{2}=\frac{1}{2}+\mathrm{i}$ also satisfies the equation in part (a)(ii). (2 marks)
(c) Show that the equation in part (a)(ii) has two equal real roots.

6 The diagram shows a circle C and a line L, which is the tangent to C at the point $(1,1)$. The equations of C and L are

$$
x^{2}+y^{2}=2 \quad \text { and } \quad x+y=2
$$

respectively.

The circle C is now transformed by a stretch with scale factor 2 parallel to the x-axis. The image of C under this stretch is an ellipse E.
(a) On the diagram below, sketch the ellipse E, indicating the coordinates of the points where it intersects the coordinate axes.
(b) Find equations of:
(i) the ellipse E;
(ii) the tangent to E at the point $(2,1)$.

7
A graph has equation

$$
y=\frac{x-4}{x^{2}+9}
$$

(a) Explain why the graph has no vertical asymptote and give the equation of the horizontal asymptote.
(b) Show that, if the line $y=k$ intersects the graph, the x-coordinates of the points of intersection of the line with the graph must satisfy the equation

$$
\begin{equation*}
k x^{2}-x+(9 k+4)=0 \tag{2marks}
\end{equation*}
$$

(c) Show that this equation has real roots if $-\frac{1}{2} \leqslant k \leqslant \frac{1}{18}$.
(d) Hence find the coordinates of the two stationary points on the curve.
(No credit will be given for methods involving differentiation.)

8 (a) The equation

$$
x^{3}+2 x^{2}+x-100000=0
$$

has one real root. Taking $x_{1}=50$ as a first approximation to this root, use the Newton-Raphson method to find a second approximation, x_{2}, to the root. (3 marks)
(b) (i) Given that $S_{n}=\sum_{r=1}^{n} r(3 r+1)$, use the formulae for $\sum_{r=1}^{n} r^{2}$ and $\sum_{r=1}^{n} r$ to show that

$$
S_{n}=n(n+1)^{2}
$$

(ii) The lowest integer n for which $S_{n}>100000$ is denoted by N.

Show that

$$
\begin{equation*}
N^{3}+2 N^{2}+N-100000>0 \tag{1mark}
\end{equation*}
$$

(c) Find the value of N, justifying your answer.

